If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.0962x^2+0.6x-15=0
a = 0.0962; b = 0.6; c = -15;
Δ = b2-4ac
Δ = 0.62-4·0.0962·(-15)
Δ = 6.132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.6)-\sqrt{6.132}}{2*0.0962}=\frac{-0.6-\sqrt{6.132}}{0.1924} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.6)+\sqrt{6.132}}{2*0.0962}=\frac{-0.6+\sqrt{6.132}}{0.1924} $
| 7-3x=5+4x+12-10x | | 5.x2-125=0 | | 6×(2x-1)=-18 | | 3.x-15=6 | | 2.x+6=20 | | 5r-2=8 | | 19-6g=1 | | 12-2x=`18 | | 4+2a=14 | | 44+8y=10y+14 | | 1/3g-2=1 | | x➗4=6 | | (8x+7)^2=0 | | 2x^2+4x^2-3x^2=2 | | 2x^2=4x^2+3x^2=2 | | -6(3x-1)=-138 | | 7x+7=11+3x | | 2x^2-4x^2+3x^2=2 | | 2x^2-4x^2+3x^2=1 | | 13=15-x | | 2x+19=39−2x | | 8x=2(5x-4) | | |3-5x|=-8 | | 0.0267-x/x^2=1.8*10^10 | | 4x-7=5(1+x) | | 7x-3x=4+8 | | 5x-10=10x+9 | | 8+i/5=10 | | 9-(12-8)=4x-(51+8) | | 2^x=1÷8 | | 12x-3(x-4)=30 | | 2b3=6 |